Hierarchies of Forcing Axioms, the Continuum Hypothesis and Square Principles

نویسنده

  • GUNTER FUCHS
چکیده

I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle at ω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forcing Axioms and the Continuum Hypothesis, Part Ii: Transcending Ω1-sequences of Real Numbers

The purpose of this article is to prove that the forcing axiom for completely proper forcings is inconsistent with the Continuum Hypothesis. This answers a longstanding problem of Shelah.

متن کامل

Topics in Set Theory

Axiomatics. The formal axiomatic system of ordinary set theory (ZFC). Models of set theory. Absoluteness. Simple independence results. Transfinite recursion. Ranks. Reflection principles. Constructibility. [4] Infinitary combinatorics. Cofinality. Stationary sets. Fodor’s lemma. Solovay’s theorem. Cardinal exponentiation. Beth and Gimel functions. Generalized Continuum Hypothesis. Singular Card...

متن کامل

The Continuum Hypothesis, Part II, Volume 48, Number 7

Introduction In the first part of this article, I identified the correct axioms for the structure 〈P(N),N,+, ·,∈〉 , which is the standard structure for Second Order Number Theory. The axioms, collectively “Projective Determinacy”, solve many of the otherwise unsolvable, classical problems of this structure. Actually working from the axioms of set theory, ZFC, I identified a natural progression ...

متن کامل

The Search for New Axioms

The independence results in set theory invite the search for new and justified axioms. In Chapter 1 I set the stage by examining three approaches to justifying the axioms of standard set theory (stage theory, Godel's approach, and reflection principles) and argue that the approach via reflection principles is the most successful. In Chapter 2 I analyse the limitations of ZF and use this analysi...

متن کامل

The Choice of New Axioms in Set Theory (draft)

The development of axiomatic set theory originated from the need for a rigorous investigation of the basic principles at the foundations of mathematics. The classical theory of sets ZFC offers a rich framework, nevertheless many crucial problems (such as the famous continuum hypothesis) cannot be solved within this theory. For this reason, set theorists have been exploring new axioms that would...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017